Welcome to MiCorps Cooperative Lakes Monitoring Program's Annual Training.

• For CLMP procedures and data forms please visit: micorps.net/lake-monitoring/clmp-documents/ and then click on the name of the parameter.

Today's Agenda:

Michigan Clean

Water Corps

9:00 AM – 9:30 AM	Welcome and Introduction to CLMP
9:30 – 10:00 AM	Secchi Disk
10:00 - 10:15 AM	BREAK
10:15 – 10:45 AM	Spring and Summer Phosphorus
10:45 AM – Noon	Dissolved Oxygen & Temperature
Noon – 1:00 PM	Lunch Break
1:00 – 2:00 PM	Score the Shore
2:00 – 3:00 PM	Chlorophyll-a
3:00 – 3:15 PM	BREAK
3:15 PM – 4:30 PM	Exotic Aquatic Plant Watch

Getting Started

- Audio is through your computer speakers or headset: You may not hear sound until training begins.
- Use the **Audio Settings** option to do a sound check.
- During the webinar if you do not hear audio, make sure your sound is turned on then contact the **Help Desk.**

How to Ask Questions

Click on the Chat Icon to submit a question to the presenters.

Help Desk

Call the MSU Distance Learning Help Desk 844-678-6200 for technical support.

Secchi Disk Water Transparency

Erick Elgin

Erick Elgin,

CLMP Lake Program Manager

Michigan State University Extension

Contact: 218-340-5731 elgineri@msu.edu

Michigan Clean Water Corps

Secchi disk water transparency

What is a Secchi Disk?

Secchi disk

clear water

cloudy water

How does it work?

Water clarity is affected by

- Water color
- Algae
- Suspended solids (organic, sediment, etc...)

What does Secchi transparency tell us?

- Indicator of natural processes and human changes
 - Spring clear water state

Aichigan Clean

Nater Corps

• Eutrophication, Oligotrophication, and Browning

Monitoring water clarity through a season

Monitoring water clarity through the seasons

Michigan Clean Water Corps

CLMP Secchi Sampling Requirements

Evenly spaced monitoring through middle of May to middle of September

One a week or every other week

Why 8 measurements spaced evenly through summer? Lakes Change Through Time!

Step 1. Drift your boat approximately over the deepest part of the lake

MC0862TA

.....

MANERS BARAFIS

Where to monitor – Find the deepest basin

-83.33195

-83.55287 -83.5468

-83.58163

-83.59922

-83.60152

-83.56633

-83.57416

-86.98277

-86.13441 -85.930559

-86.038892

-85.21889

-85.31556

-85.27334 -85.3028

-85.431392

-85.248892

-85.534448

-85.521115

-85.52042

-85.537626

-85.537626

-85.3862 -86.186115

Michigan Clean

Water Corps

010017 Cedar	Alcona	44.52751
010101 Hubbard (1)	Alcona	44.77224
010102 Hubbard (2)	Alcona	44.80941
010103 Hubbard (3)	Alcona	44.83379
010104 Hubbard (4)	Alcona	44.8483
010105 Hubbard (5)	Alcona	44.83168
010106 Hubbard (6)	Alcona	44.81146
010107 Hubbard (7)	Alcona	44.7943
020127 Deer	Alger	46.48016
030203 Hutchins	Allegan	42.58316
030259 Eagle	Allegan	42.425559
030263 Osterhout	Allegan	42.439448
050052 Bellaire	Antrim	44.95333
050055 Torch (North)	Antrim	45.027781
050101 Clam	Antrim	44.93612
050240 Torch (South)	Antrim	44.9159
080071 Crooked (Upper)	Barry	42.490281
080092 Bristol	Barry	42.484449
080096 Duncan	Barry	42.749448
080103 Payne	Barry	42.749448
080176 Barlow	Barry	42.670559
080259 Cobb	Barry	42.6525
080279 Long (Little)	Barry	42.6525
080294 Wall	Barry	42.5215
100066 Crystal	Benzie	44.668615

Micorps.net \rightarrow Lake Monitoring \rightarrow CLMP Documents

Step 2. On the shady side of the boat, slowly lower disk until it disappears from view.

 Note the depth of the water at which the disk disappears.

Step 3. Slowly raise disk until it reappears

• Note this depth also.

Water Corps

Step 4. The official measurement is the average of the 2 depths.

- Record that number on our datasheet.
- Round to the nearest half-foot

A couple things to remember: 1. Don't wear sunglasses!

2. Pick the shady side

3. Be consistent in weather and timing!

- Measure between 10 am 4 pm (try and be consistent)
- Sunny calm days are best
- Do not measure during heavy boating

4. For clear shallow lakes:Note if Secchi is onbottom of lake

Michigan Clean Water Corps		S TR/ 20	ECCHI DIS ANSPAREN 023 Data For	K NCY m	Cooperative Lakes Monitoring Program
Lake Name:		Count	ty:	Tov	vnship:
Lake Sampling Site (F	ield ID) Number	<u></u>		(see rev	erse and mark location on map)
atitude:			Longitude		
WEEKLY SAMPLING INTERVAL	DATE SAMPLED	TIME OF DAY	SECCHI DEPTH (to nearest ½ foot)	WEATHER CONDITIONS (sunny, cloudy, windy)	UNUSUAL CONDITIONS (Secchi disk on bottom of lake, heavy rain, boating, etc.)
May 14-20					-
May 21-27	1				
May 28-June 3	1				-
June 4-10					
					· · · · · · · · · · · · · · · · · · ·
June 11-17					2
June 11-17 June 18-24					
June 11-17 June 18-24 June 25-July 1					
June 11-17 June 18-24 June 25-July 1 July 2-8					

Note if secchi is on bottom of lake

Michigan Clean Water Corps

- In the box below draw an outline of your lake (i.e. lake map). Or attach a copy of a lake map.
- On the lake map, mark your Secchi disk sampling location (this should be at the deepest location in your lake) and write the LAKE DEPTH at this location (not Secchi depth).

DATA ENTRY

If you can, please enter your data into the MiCorps Data Exchange by October 31st.

DATA SHEET TURN IN Protocol

Please do the following:

(1) Make a copy of your field data sheets to keep for your records,

(2) Mail one copy by October 31st to: MLSA, P.O. Box 303, Long Lake, MI 48743

a. For electronic submission, send to: MiCorps@msu.edu

Data Entry

- All volunteers are encouraged to use the online data entry system
- Follow the instructions for data submission on our website, <u>www.micorps.net</u>.

MiCorps Data Exchange Entry Point

The Michigan Clean Water Corps (MiCorps) is a network of volunteer water quality monitoring programs

Accessing data

Michigan Clean

Water Corps

ecutive Order #2003-15 to assist the Department of a collecting and sharing water quality data for use in rograms. About MiCorps. Have questions? Ask MiCorps Staff!

Receive a data report in early 2025

Michigan Clean

Water Corps

2017 Data Report for

Deer Lake, Alger County

Site ID: 020127

46.48016°N, 86.98277°W

Site ID: 750142

Michigan Clean

Water Corps

Corey Lake, St. Joseph County 2022 CLMP Results

Secchi Disk Transparency (feet)

Year	# Readings	Min	Max	Avg	Std. Dev	Carlson TSI
2022	17	13.0	26.0	17.0	3.6	36
2017-2021	97	8.0	27.0	16.4	4.2	37
1974-2016 2022 All CLMP	742	5.5	39.0	13.4	5.5	40
Lakes	3178	1.0	63.0	11.6	2.5	43

					Std.	
Year	# Samples	Min	Max	Med	Dev	Carlson TSI
2019	5	<1.0	3.9	1.6	1.4	35
2014-2018	20	<1.0	2.7	<1.0	0.5	<31
1998-2013	71	<1.0	4.2	<1.0	0.8	40
2022 All	697	<10	12.0	27	5.2	12
OLIVII LAKES	007	~ 1.0	45.0	5.1	5.5	40

Cooperative Lakes

Monitoring Program

The tables below give the results-to-TSI conversions for the water quality data ranges normally seen in the CLMP. The formulas for this conversion can be found in the CLMP manual (link is on page 2 of this report).

Phosphorus	
(ppb)	TSI Value
<5	<27
6	30
8	34
10	37
12	40
15	43
18	46
21	48
24	50
32	54
36	56
42	58
48	60
>50	>61

Secchi Depth	
(ft)	TSI Value
>30	<28
25	31
20	34
15	38
12	42
10	44
7.5	48
6	52
4	57
<3	>61

	Chlorophyll-a
TSI Valu	(ppb)
<3	<1
3	2
4	3
4	4
4	6
5	8
5	12
5	16
6	22
>6	>22

TSI for Cedar Lake in 2023				
Average	33			
Secchi Disk	-			
Summer TP	30			
Chlorophyll-a	37			

Oligotrophic <36	Oligo/Meso 36-40	Mesotrophic 41-45	Meso/Eutro 46-50	Eutrophic 51-61	Нур	pereutrophic >61	3
-30	-35	-40	-45	-50	-55	-60	-65
Jana			111		1		1.1.3

^ Average

^ Chlorophyll-a

^ Total Phosphorus

Michigan Clean Water Corps

Questions?

To learn more about the Cooperative Lakes Monitoring Program, visit: <u>MiCorps.net</u>

MICHIGAN DEPARTMENT OF ENVIRONMENT, GREAT LAKES, AND ENERGY

Michigan Clean

Water Corps

Training Agenda

9:00 AM – 9:30 AM	Welcome and Introduction to CLMP
9:30 AM – 10:00 AM	Secchi Disk Transparency
10:00 AM – 10:15 AM	BREAK
10:15 AM – 10:45 AM	Spring and Summer Phosphorus
10:45 AM – Noon	Dissolved Oxygen & Temperature
Noon – 1:00 PM	Lunch
1:00 PM – 2:00 PM	Score the Shore
2:00 PM – 3:00 PM	Chlorophyll
3:00 PM – 3:15 PM	Break
3:15 PM – 4:30 PM	Exotic Aquatic Plant Watch

Michigan Clean /Water Corps

